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Abstract—A membrane distributed-reflector (DR) laser
bonded on a Si substrate is a promising light source for on-chip
optical interconnection, as it features a low threshold current
and enough output power. Benzocyclobutene (BCB) adhesive
wafer-bonding or hydrophilic bonding technologies have been
used to integrate the membrane laser with Si. However, the
thermal conductivity of BCB is low, which results in a high
thermal resistance of the membrane laser, and the process of
both bonding technologies requires annealing. Thus, the bonded
wafer accumulated thermal stress. In this study, we introduce
a chemical mechanical polishing (CMP) process to flatten the
wafer surface and investigate the surface activated bonding (SAB)
based on an Ar fast atom beam (FAB) assisted by an a-Si layer to
achieve a room temperature bonding. Based on this room temper-
ature bonding technology, a membrane Fabry-Perot (FP) laser is
demonstrated for the first time, and its thermal characteristics
are measured. A higher optical saturation current (55 mA) was
obtained compared to that of the conventional membrane FP
laser (40 mA) with a 2-pum-thick BCB bonding layer. From the
lasing wavelength variation against the heat dissipation power
and temperature, it was found that a reduction in thermal
resistance of approximately 50% (240 K/W to 120 K/W) was
achieved by eliminating the BCB layer; the simulation results
also showed the same trend.

Index Terms—Surface activated bonding, membrane laser,
thermal resistance, chemical mechanical polishing.

I. INTRODUCTION

WITH the increase in transistor integration density on
a chip based on the scaling rule [1], the interconnect
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between transistors, especially the global wiring, becomes a
limiting factor for improving the large-scale integration (LSI)
performance because the metallic global wiring suffers from
increased resistance and capacitance [2]-[4]. The RC delay
affects the bandwidth of data transmission, and the energy dis-
sipation increases because of the Joule heating of the wiring.
Recently, a promising solution named “on-chip optical inter-
connection” [5]-[8] was introduced, and it has received consid-
erable attention with regard to solving this problem. Replacing
the electrical interconnection by optical interconnection makes
the above-mentioned RC delay and Joule heating negligi-
ble. However, to achieve superior overall performance com-
pared with electrical interconnection, compact light sources
with ultra-low power consumption are required. In addition,
it should be possible to easily integrate the light sources into
the Si substrate. Many light sources such as VCSELs [9], [10]
and photonic crystal lasers [11], [12] have been developed for
achieving on-chip optical interconnections. However, VCSELs
require an in-plane light incident mechanism for use as the
light source of on-chip optical wiring [13], and photonic
crystal lasers require avalanche photodiodes (APDs) for mea-
surement owing to their poor output power [14].

We have proposed a membrane structure-based distributed-
reflector (DR) laser on Si bonded by benzocyclobutene
(BCB) adhesive bonding at a CMOS-compatible temperature
(<300 °C) for on-chip optical interconnection [15]-[17].
A thin semiconductor core layer sandwiched between low-
refractive-index materials such as air and SiO; is the feature
of membrane structure. Therefore, the optical confinement to
the thin core layer can be stronger, and optical confinement
factor is approximately three times higher than that of con-
ventional semiconductor lasers with semiconductor cladding
layers because of this high-index contrast. This stronger optical
confinement results in a higher modal gain, resulting in a
low-threshold current operation. Thus far, a 0.21 mA low
threshold current and 20 Gbit/s high speed operation of
short-cavity membrane DR lasers with a low energy cost of
96 fJ/bit has been demonstrated [18].

Although high speed and low energy cost operations have
been demonstrated, issues with the temperature characteristics
are yet to be addressed. For high-temperature operation, Bragg
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wavelength detuning was used to compensate for the gain
at high temperatures, which resulted in a 90 °C operation
of the membrane DR laser [19]. However, a high thermal
resistance of over 5000 K/W was experimentally estimated
using a 30-um-length DFB cavity. This was attributed to the
extremely low thermal conductivity (0.29 W/ K-m) of the BCB
bonding layer compared with the other materials in the laser
structure, which limits the heat dissipation. Therefore, a BCB-
free structure of the membrane laser and the corresponding
fabrication process need to be investigated for low-thermal-
resistance membrane lasers operating at high temperatures.

To achieve a BCB-free structure in a membrane laser,
it is necessary to develop an appropriate direct wafer-bonding
technology. Recently, various direct wafer-bonding technolo-
gies have been studied for hybrid integration [20], [21], such
as hydrophilic bonding [21] and surface-activated bonding
(SAB) [22], [23] based on fast atom beam (FAB) at room
temperature. The laser fabricated through plasma-activated
bonding with low post-annealing (<200 °C) [24]-[26] was
demonstrated to reduce the influence of thermal expansion
stress due to the thermal expansion coefficient difference
between Si (2.6x 107° /K) and InP (4.8 x 106 /K). Ultimately,
room-temperature bonding is the most attractive method for
high-quality III-V/Si hybrid integration. The SAB based on
Ar-FAB has been widely studied using various semiconductor
materials (sapphire, Si, GaAs, InP, and GaP) [27]. We have
also demonstrated an InP-based layer/SOI Fabry-Perot (FP)
laser through SAB based on Xe-FAB [28]. However, the study
showed that SiO, was difficult to bond by SAB in both
Si-to-oxide and oxide-to-oxide bonding [29]. To overcome
this problem, a specific SAB using a-Si nanofilm has been
demonstrated [30], [31]. In our previous report [32], a high-
quality SAB of a GalnAsP/InP/SiO; structure bonded on Si
with a-Si intermediate assisted layer was demonstrated.

In this study, we fabricated a membrane FP laser through
Ar-FAB based SAB with a-Si nanofilm assisted layer for
the first time and measured its thermal properties. A higher
saturation current was obtained compared with the 2-um-
thick BCB-bonded membrane FP laser. The thermal resistance
was estimated to be 50% lower than that of the BCB-bonded
device.

Section II shows the theoretical calculation of thermal resis-
tance using FP membrane laser model. Section III shows the
design and details of fabrication process. The characteristics
of fabricated devices will be discussed in section IV. Finally,
the section V summarizes the whole work in this paper.

II. ANALYSIS OF THERMAL RESISTANCE

In this section, the thermal resistance is theoretically esti-
mated. Figure 1 (a) shows the cross-sectional thermal model
of the membrane laser. In the active region, Joule heat, non-
radiative recombination, and optical absorption are considered
as the heat powers. In the InP layers, the current path in p-InP
was assumed to be the heat source owing to the Joule heat,
while the resistance of the n-InP layer was negligible because
the mobility of electrons in conduction band is larger than that
of the holes in valence band, resulting the resistivity of p-InP
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is much larger than that of n-InP [33], thereby the resistance
of p-InP dominated the entire resistance of membrane laser.
Therefore, the heat dissipated power Ppeac can be expressed as

Phear = [IVd —2Egna (I — Ith)] + IZ(Ract + Rp—mmp) (1)

where 1, V4, and Ej; are the bias current, voltage drop through
the active region, and bandgap of 0.8 eV, respectively.

Figures 1 (b) and (c) show the cross-sectional temperature
distribution based on the 2-um-thick BCB and BCB-free
structure of the membrane laser using the 2D finite element
method. In this model, Cu heat sink was set under the
membrane laser with an air gap layer of 2-um representing
the roughness between silicon substrate and Cu heat sink.
In horizontal direction, the distance between n-InP and the
active region was 3 um, and that between p-InP and the active
region was 1.5 um. The average thermal conductivity was
used in a bulk structure of active region as a replacement of
quantum wells, barriers, and optical confinement layers. The
thermal conductivities used in the simulation [34], [35] are
listed in Table I. Typical steady-state heat transfer equations
were used in the simulation [36]:

~V.-(xkVT)=Q 2)

where « is the thermal conductivity, T is the temperature, and
Q is the heat density. Two boundary conditions were set for
the simulations. One is the convection flux, and the other is
the temperature of the heat sink, which is given by

kVT = h(Tex — T) 3)
T |pear sink = Ts = 293.15 K 4)

where h is the heat transfer coefficient and 7Ty is the bottom
temperature of the heat sink. The heat flux of the laser,
surrounded by air in an indoor environment, was assumed to
be 4.6 W/(Komz). The external temperature Tix; was set to be
293.15 K.

The initial temperature of all the solid heat-transfer modules
was also set to 293.15 K. The heat dissipated power of the
laser was set as 17.7 mW, with a bias current of 20 mA and
differential resistance of 50 Q. From Figs. 1(b) and (c), it can
be seen that the temperature change in the active region were
4.7 and 2.3 K, respectively, which indicates that the BCB-free
structure has a 50% higher heat dissipation effect compared
with the 2-um-thick BCB structure. The thermal resistance
R, was calculated using the following equation:

AT

Rip = [K/W] )

heat

where AT is the temperature rise of the active region.

Figure 2 shows the calculated BCB thickness dependence of
the thermal resistance using a 550-um cavity length membrane
FP laser model. It can be seen that there is approximately
50% thermal resistance reduction by shortening the thickness
of BCB from 2 um to O um, which indicates that introducing
a BCB-free structure in the membrane laser is an effective
method for heat diffusion.
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(a) (b)

(a) Thermal model of membrane laser. (b) Calculated temperature distribution based on 2D-FEM in 2-xm BCB bonding structure and in (c) BCB-free

Fig. 1.
structure.

Fig. 2. Dependence of thermal resistance on BCB thickness.

III. INVESTIGATION OF FABEICATION PROCESS

Figure 3(a) shows a schematic of the lateral-current-
injection (LCI) membrane FP laser bonded by SAB. The initial
wafer (Fig. 3(b)) grown on a 350-um-thick InP substrate via
organometallic vapor phase epitaxy (OMVPE) consists of a
220-nm-thick core layer comprising five GalnAsP quantum
wells sandwiched by InP, pT-GalnAs contact layer, etch
stop layers, and cap layers. The core layer contains five 1%
compressively strained GalnAsP wells, 0.15% tensile-strained
GalnAsP barriers, undoped GalnAsP optical confinement lay-
ers (OCLs), and undoped InP layers.

The fabrication processes of BCB-bonded and BCB-free
membrane FP lasers are shown in Figs. 4(a) and (b), respec-
tively. First, after preparing the initial wafer, the n-side
and p-side InP layers were formed by two-step OMVPE
selective regrowth. Then, for the BCB-bonded device shown
in Fig. 4(a), plasma-enhanced chemical vapor deposition
(PEVCD) was used to deposit a 1-um-thick SiO; layer fol-
lowed by a BCB bonding process. A 2-um-thick BCB layer
was spin-coated on the Si substrate, then the Si wafer was pre-
cured for 40 min in an oven where full of nitrogen at 210 °C.
After that, the laser wafer was bonded on Si at 130 °C under
a 25 kPa load pressure. Subsequently, for BCB solidification,
the pre-bonded wafer was hard-cured in a nitrogen atmosphere
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(©)

(a)
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Fig. 3. (a) Schematic of direct bonded membrane FP laser using surface
activated bonding. (b) Initial wafer structure.

oven at 250 °C for 60 min. After removing unnecessary layers,
the contact layer was patterned through photolithography and
wet etching, and finally, the electrodes were evaporated.

The BCB bonding process is not sensitive to the surface
profiles of the wafer. However, the case of direct bonding is
different. The surface profile after n-and p-side InP formation
via OMVPE is shown in Fig. 5, measured using a probe-
scan surface profiler. It showed an approximately 130-nm step
including over-regrowth and low thickness of p-InP due to
wide Si0; masks from the OMVPE process. Therefore, in the
BCB-free process, a chemical mechanical polishing (CMP)
process should be introduced to flatten the SiO; surface. The
change process is illustrated in Fig. 4(b). The 2- um-thick SiO»
was deposited, then about 1-xm-thick SiO; was removed for
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Fig. 4. Membrane FP laser fabrication process of (a) BCB bonding structure and (b) BCB-free structure.

TABLE I
THERMAL CONDUCTIVITY USED IN SIMULATION [34], [35]

Thermal
Material conductivity
[W/(K-m)]
Cu 400
Au 320
InP 68
Si 158
GalnAsP (active) 5
GalnAs (contact layer) 4.4
SiO, 1.4
BCB 0.29
100 T T T T T T T T T T
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Fig. 5. Surface shape before bonding process.

CMP planarization. As the result, the remained thickness of
SiO, was 1 um. Then, CMP and SAB assisted by an a-Si
nanofilm at room temperature were carried out.

For the CMP process, the slurry used for SiO» polishing
in the experiment was Semi-sperse 25. The process was per-
formed under in-situ polishing conditions (while polishing the
wafer, the polishing pad was polished using a pad conditioner
simultaneously) with a polishing-pad/wafer rotation speed of
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(] «\\ /' w—
Q 60 - N .o {60 <
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RMS: 0.301 nm

2.00 pm

(b)

Fig. 6. (a) Surface step and in-plane uniformity dependence on polishing
amount. (b) Surface roughness after polishing 1-xm-SiO; using slurry of
Semi-sperse 25.

40/41 rpm, pressure of 50 g/cm?, and slurry flow rate of
100 ml/min. Figure 6(a) shows the macroscopic results of
polishing with an initial surface step of 130 nm in the same
condition after two-step OMVPE regrowth. The results showed
that a polishing amount of at least 1000 nm was needed to
obtain a relatively flat surface. However, at the same time,
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Fig. 7. Surface activated bonding process assisted by a-Si nano-film. (a) Ar-FAB irradiation for a-Si sputtering. (b) Si-substrate surface activation using
Ar-FAB. (c) Room temperature bonding. (d) Removing unnecessary layers by selective wet-etching and TEM image of bonding interface.
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Fig. 8. (a) PL intensity before and after bonding using a test wafer. (b) Measured and fitting calculated XRD data of as-grown and bonded wafer.
(a) (b)
Fig. 9.

Images of fabricated device. (a) Bonding area after CMP-SAB with p-i-n diode structure. (b) SEM image of fabricated device by SAB.

there was a difference of over 100 nm between the edge and
center of the wafer after 1000 nm polishing. The value of in-
plane uniformity (difference in peak-to-peak SiO; thickness),
estimated through 17 points of SiO; thickness distributed in a
2-inch wafer, increased monotonically as the polishing amount
increased. Therefore, an approximately 1000 nm polishing
amount can be used in the fabrication process. Figure 6(b)
shows the surface roughness after polishing with 1000 nm

Si0,, measured using atomic force microscopy (AFM). The
root mean square (RMS) value was 0.301 nm, which meets
the ideal value of less than 0.5 nm for direct bonding [37].
Figure 7 shows the details of the surface-activated bonding
process assisted by the Si nanofilm. All the processes were
performed under a high-vacuum atmosphere (<107 Pa).
First, the laser wafer and target Si wafer as the sputtering
source were chucked at the upper and bottom sides of the
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Fig. 10. I-L characteristics of devices fabricated via SAB and BCB-bonding.
(2)
(b)

Fig. 11. (a) Temperature dependence of the lasing wavelength measured at

a fixed injection current of 20 mA. (b) Lasing wavelength of BCB-bonded
and SAB devices as a function of heat dissipated power measured at 20°C.

chamber, respectively. Then, Ar-FAB was used to irradiate
the target Si wafer under an Ar flow of 30 sccm, a current
of 100 mA, a voltage of 1.5 kV, and an irradiation time
of 15 min. Using this irradiation, the surface of SiO, was
formed a sputtered a-Si nanofilm (Fig. 7(a)). Subsequently,
a new Si wafer was introduced into chamber for replacing
the target Si sputtering source. Then, Ar-FAB was used to
activate the new Si wafer under an Ar flow of 30 sccm,
a current of 50 mA, a voltage of 1.2 kV, and an irradiation
time of 90 s (Fig. 7(b)). Finally, two wafers were bonded
without any heat for 5 min under a pressure of 500 kgf
(Fig. 7(c)). After bonding, selective wet etching was performed
to remove unnecessary layers (Fig. 7(d)). The transmission
electron microscope (TEM) image shows detailed information
about the a-Si bonding layer. Two a-Si layers were observed at
the bonding interface. The upper layer was the sputtered a-Si
layer, and the bottom layer was formed by Ar-FAB irradiation
in the activation step of the bonding process.

Figure 8(a) shows the photoluminescence (PL) intensity
before and after bonding using a test wafer. The shoul-
der around 1630 nm indicates the peak of the GalnAs
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(2)

(b)

Fig. 12.  I-L characteristics under various stage temperature of devices
fabricated via (a) BCB-bonding and (b) SAB.

etch-stop layer in the as-grown wafer, and the etch-stop
layer was removed in bonded wafer. No obvious degradation
was observed after bonding, and the small peak wavelength
blueshift was due to the compressive strain relaxation when
removed 350-um-thick InP-substrate. Figure 8(b) shows the
measured and the calculated XRD w-20 scan data. The InP
peak was reduced in the bonded wafer because the thick InP
substrate was removed by wet etching, and the peak was dom-
inated by InP (150 nm in total) inside the core layer. Based on
the measurement, the relative positions of satellite peaks from
“—4” to “4” were well-maintained after bonding. The fitting
calculation reveals that the net strain in the multi-quantum-
wells reduced from 0.50% to 0.47%, which manifested a peak
wavelength blueshift in the PL. measurement.

Figure 9(a) shows the bonding area during the fabrication
of the membrane laser with a p-i-n diode structure. A large
enough area of bonding was obtained, and the scanning
electron microscope (SEM) image of the device is shown in
Fig. 9(b). A flat bonding interface between the Si and SiOy
layers was achieved owing to the CMP planarization. It seems
that the 100 nm SiO; film thickness that slowly changes within
the 2-inch wafer size range did not have a major impact on
the direct bonding process. Based on the discussion above,
a BCB-free process for the membrane laser was successfully
developed.

IV. DEVICE CHARACTERISTICS

Figure 10 shows the light output characteristics of BCB-
bonded and BCB-free (using SAB) membrane FP lasers
in room temperature continuous wave conditions (RT-CW).
The stripe width, cavity length, differential resistance, and
external differential quantum efficiency were Wy = 1.5 um,
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L =590 um, Ry = 50 Q, and 7q = 6.4%/facet, respectively,
in the BCB- bonded device and Wy = 1.2 ym, L = 610 um,
Rq = 130 Q, and 79 = 16%/facet, respectively in the SAB
device. The threshold current of both devices was around
5.5 mA. A higher differential resistance in SAB device was
due to a larger distance between p-electrode and active layer.
Even with this problem, a higher output power and optical
saturation current were obtained for the SAB device, indicating
a structure with higher heat dissipation.

Figure 11(a) shows the temperature dependence of the lasing
wavelength under a fixed injection current of 20 mA. The
slopes of 0.54 nm/K and 0.52 nm/K were obtained for the
BCB-bonded and SAB devices, respectively. This difference
contributed to the measurement error. The thicknesses of the
Si substrates in the BCB-bonded and SAB devices were
150 um and 550 pm, respectively, which caused a slightly
different temperature distribution in the active region when
the stage temperature changed. Figure 11(b) shows the lasing
wavelength as a function of heat dissipated power (a product
of the injected current and the bias voltage minus the output
power) at a fixed temperature of 20 °C. The average slopes
for the BCB-bonded and SAB devices were 0.13 nm/mW and
0.061 nm/mW, respectively, and the thermal resistances were
calculated to be approximately 240 K/W and 120 K/W, respec-
tively. The thermal resistance was reduced by approximately
50%, according to the experimental results, which agreed with
the simulation results.

Figure 12 shows the I-L characteristics of both BCB-
bonding and SAB device under various stage temperature.
Compared with BCB-bonded device, a higher lasing temper-
ature up to 95°C was obtained in SAB membrane FP laser
thanks to the lower thermal resistance.

V. CONCLUSION

We first theoretically analyzed the thermal resistance of a
membrane FP laser. The results showed that the temperature
rise of the active region in the BCB-free structure was 50%
lower than that in the conventional 2-um-thick BCB-bonded
structure; moreover, a 50% reduction in thermal resistance was
observed when the BCB thickness was reduced from 2 um
to 0 xm. We then constructed a BCB-free structure fabrication
process for the membrane laser in order to reduce the thermal
resistance. A CMP process was used to flatten the surface
of the SiO; layer after two-step OMVPE regrowth. Surface-
activated bonding using an Ar fast atom beam assisted by
an a-Si nanofilm was used to bond SiO, and Si at room
temperature. As a result, a large bonding area and low strain
bonding were achieved, and no threading dislocations were
observed. Using the process described above, a BCB-free
membrane FP laser was fabricated. Compared with that for the
conventional device with a 2-um-thick BCB layer, a higher
optical saturation current was obtained even with a higher
differential resistance, and a 50% lower thermal resistance was
experimentally confirmed. In the future works, a low thermal
resistance membrane DFB and DR laser will be fabricated
using this room temperature bonding and higher temperature
and higher modulation speed operations can be expected.
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