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Abstract—To improve wireless communications systems, it is
desirable to seamlessly combine fiber-based optical and terahertz
wireless communications systems. In this paper, we demonstrate
a waveguide optically driven terahertz wave modulator using a
ring-shaped microstripline with a GaInAs photoconductive mesa
structure. In this device, terahertz wave modulation is performed
by controlling the photo-generated carriers in the GaInAs mesa.
As a result, a maximum extinction ratio of 16.8 dB in the terahertz
band was obtained with a light irradiation of 15 dBm (32 mW),
and the 3 dB modulation bandwidth was approximately 170 MHz.

Index Terms—Terahertz, III–V semiconductor, waveguide.

I. INTRODUCTION

THE terahertz band, which is defined as the frequency range
between 100 GHz and 10 THz, has been the focus of much

attention due to its potential to enable numerous applications in
the medical, chemical, biological, and information communica-
tion fields [1]–[7].

In particular, it is anticipated that wireless communica-
tions in the terahertz band will contribute toward solving sev-
eral important problems in current wireless systems, such as
spectrum scarcity and system capacity limitations. In 2002, a
120-GHz-band terahertz-wave photonic wireless link was
demonstrated for 10 Gb/s data transmission [8], [9]. In recent
years, 100 Gbit/s data transmissions at 237.5 GHz using quadra-
ture amplitude modulation (QAM) have now been achieved. In
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this system, a uni-traveling-carrier photodetector (UTC-PD) that
utilized only electrons as active carriers was used as a high-speed
terahertz generator [10], [11].

At the same time, as they support high capacity data rates,
fiber-based wired optical communications systems are being
installed in long-haul networks. A large number of waveguide
photonic devices will be required in order to make such systems
at a reasonable cost and in a limited space.

Optically-driven terahertz wave modulators are indispensable
elements used to seamlessly connect wireless terahertz commu-
nications systems and wired optical communications systems.
They must, by necessity, have the form of a GaInAsP/InP wave-
guide because they must be monolithically combined with other
conventional photonic devices such as semiconductor lasers,
optical amplifiers, and modulators [12]. Conventional optically-
driven terahertz wave modulators using photo-generated carriers
in semiconductors, however, cannot meet the above requirement
because they have the form of Si-based parallel plate waveguide
[13], GaAs-based active metamaterials [14], [15], and GaInAs-
based bulk wafers [16].

Therefore, in this paper, we have proposed and investigated
InP-based waveguide optically-driven terahertz wave modula-
tors using a ring-shaped microstripline with a GaInAs photo-
conductive mesa structure. This modulator is compatible with
standard fabrication processes for photonic integrated circuits
(PICs) [17], and is easily integrated with other InP-based opti-
cal devices. The paper is organized as follows. First, the con-
cept of the device and its theoretical foundation are provided in
Section II. The fabrication processes for the device are explained
in Section III. Sections IV and V describe the operating char-
acteristics of the device, and provides the static and dynamic
terahertz-wave transmission dependencies based on the input
power of the incident light. Finally, Section VI concludes the
paper.

II. CONCEPT OF WAVE MODULATION AND

THEORETICAL ANALYSIS

Fig. 1 shows a schematic diagram of our waveguide optically-
driven terahertz wave modulators. In the device, an input ter-
ahertz wave propagates through a ring-shaped Au/SiO2 /Au
microstripline with a gap consisting of an undoped GaInAs/InP
mesa structure.
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Fig. 1. Waveguide optically-driven terahertz wave modulators using ring-shaped microstripline with GaInAs photoconductive mesa structure.

Fig. 2. Enlarged view of ring-shaped microstripline with GaInAs photocon-
ductive mesa in device.

The ring-shaped microstripline described in this paper is a
type of antenna operating in the terahertz band [18]. When
the frequency of an incident terahertz wave corresponds to the
resonance frequency of the ring-shaped microstripline, the de-
vice shows a radiation mode and does not transmit the incident
terahertz wave. Under this condition, the GaInAs mesa works
as a capacitance for the terahertz wave. When optical signal
(λ = 1.55 μm) is irradiated to the mesa (see Fig. 2), the mesa
is metallized for terahertz waves by photo-generated carriers.
As a result, the resonance of the ring-shaped microstripline
disappears and the device transfers from a radiation mode to
a transmission mode. Note that the photon energy of the op-
tical signals (=0.8 eV) is larger than the band gap energy
of GaInAs (=0.75 eV). In this way, the terahertz-band input
signals can be modulated as the same pattern of the optical
signals [19].

The resonance frequency can be controlled by scaling the
ring. Although the center frequency was set to 300 GHz in this
study, it is possible to operate at the frequency of more than
1 THz in the same principle.

Fig. 3. Calculated relative permittivity and electrical conductivity of a semi-
conductor material GaInAs as a function of frequency f and the generated free
carrier density.

The modulation properties of the device are extremely de-
pendent on the conduction characteristics of the GaInAs for the
terahertz wave. Therefore, we first calculated the constitutive
parameters (i.e. the relative permittivity and electrical conduc-
tivity) of the GaInAs semiconductor material as a function of
free carrier density N at a frequency of 300 GHz using the Drude
model [20]. The results are shown in Fig. 3. Because of the skin
effect, the relative permittivity of the GaInAs showed a large
negative value with an increase in the carrier density. On the
other hand, the electrical conductivity of the GaInAs drastically
increased as the carrier density increased. These results indicate
that the GaInAs behaves as a metal for terahertz waves.

Using the calculated characteristics of GaInAs as stated
above, the device characteristics were analyzed. Considering
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TABLE I
SIMULATION PARAMETERS USED FOR ANALYZING

THE DEVICE CHARACTERISTICS

Parameters Sym. Values

Electron mobility † μe (N) 1 1 , 3 0 0

1 +
(

N
1 . 6 9×1 0 1 7

)0 . 4 3 6 [cm2 /Vs]

Wavelength of the optical signal λ 1.55 [μm]
Radius of spot size rs 4 [μm]
Absorption coefficient of GaInAs α 6,000 [cm−1]
Reflectivity at surface of GaInAs R 0.3
Length of one side of GaInAs mesa lm 3.5 [μm]
Thickness of GaInAs mesa tm 200 [nm]
Initial doping of GaInAs mesa N0 5 × 101 6 [cm−3 ]
Recombination coefficient B 0.79 × 10−1 0 [cm3 /s]
Short side of rectangle ring W 80 [μm]
Long side of rectangle ring L 170 [μm]

† The equation for electron mobility used in the simulation was determined by fitting
experimental data [21], [22].

carrier recombination, the carrier density N(t) inside the GaInAs
mesa can be written as follows:

dN (t)
dt

= ΔN − N (t) − N0

τ (N (t))
, (1)

where τ(N) = (BN)−1 is the carrier lifetime, N0 is initial
doping concentration of the GaInAs mesa, and ΔN is the photo-
induced carrier density per unit time. In the device, the mod-
ulated optical signals are irradiated from a lensed optical fiber
onto the mesa above the device. Therefore, assuming that the
radius of the fiber rs is the same as that of the irradiation spot
size, ΔN in (1) can be derived as follows:

ΔN = Np
lm

2

πrs
2 (1 − R)

(
1 − e−αtm

) 1
lm

2tm
, (2)

where lm and tm are the length of one side and the thickness
of the square mesa structure, respectively (see Fig. 2), α is the
absorption coefficient of GaInAs, and R is the surface reflectivity
for incident light. Additionally, Np is the number of incident
photons per unit time, as given by the following equation:

Np =
xin

hc/λ
, (3)

where xin and λ are the optical power and wavelength of the
incident light, respectively, h is the Plank constant, and c is the
speed of light in vacuum. All of the parameters used in this
simulation are summarized in Table I.

Using (1)–(3), we analyzed the transmission characteristics
of the device for a 300 GHz terahertz wave (i.e. S parameter
|S21 |) with and without wavelength 1.55 μm CW light using a
three-dimensional commercial electromagnetic field simulator
HFSS (ver. 15.0, Ansys, Inc.).

Fig. 4 shows the simulated transmission characteristics of the
whole device without input light (red line) and with input light
present with an optical power of 15 dBm (blue line). In this
study, the center frequency of the band-stop filter was set to
300 GHz by designing the ring size shown in Fig. 1 to have a
width W of 80 μm and a length L of 170 μm.

Fig. 4. Calculated transmission characteristics of the device for 300 GHz
terahertz wave without input light (red line) and with input light of 15 dBm
(blue line).

When there was no input light signal present, the device
operated as an ultra-wideband band-stop filter and produced
an attenuation of –23 dB at 300 GHz, which corresponds to the
center frequency of the band-stop filter. On the other hand, when
the input light signal was present, the device was transparent to
terahertz waves because the stopband was short-circuited by the
excited carriers inside the GaInAs mesa. Based on these results,
a magnitude of 12.1 dB switching change in the propagation
intensity (i.e. extinction ratio) can be expected at 250–350 GHz
frequency. The input optical power dependence of transmission
will be shown in Fig. 7 in the next section with measurement
results.

III. FABRICATION PROCESS

We fabricated a prototype device to validate the results of
the simulation, as shown in Fig. 5. First, an un-doped InP layer
(1 μm thick) and an undoped Ga0.47In0.53As layer (200 nm
thick) were grown on a n-InP substrate (6 × 1018 cm−3) using
the metal organic chemical vapor deposition (MOCVD) method
(step 1 in Fig. 5). Next, a photoconductive mesa structure was
formed on the wafer using reactive-ion etching and photolithog-
raphy (step 2 in Fig. 5). Then, a 1-μm-thick SiO2 layer was
deposited onto the entire substrate after a ground electrode was
formed (steps 3–4 in Fig. 5). After removing the SiO2 on top
of the mesa, the ring-shaped microstripline was formed using
a photolithography and lift-off process (steps 5–6 in Fig. 5).
Finally, a straight microstripline for the terahertz waves was
fabricated on the device surface followed by the formation of a
sloped benzocyclobutene (BCB) layer (steps 7–8 in Fig. 5). The
thickness of the BCB layer was set to 9 μm in order to facilitate
impedance matching.

Fig. 6 shows an optical microscope view of the entire device.
The dimensions of the ring were identical to those used in the
simulation in the previous sections. For input and output of
the terahertz signal, GSG type electrical pads were used with a
design under consideration of impedance matching.
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Fig. 5. Fabrication process for the device. The ring-shaped microstripline with GaInAs photoconductive mesa was prepared using photolithography and lift-off
process.

Fig. 6. Plan view of waveguide optically-driven terahertz wave modulators
observed with optical microscopy.

IV. STATIC CHARACTERISTICS OF DEVICE

The S parameters, which represent the static characteristics of
the fabricated device, were first measured using a vector network
analyzer (VNA, Keysight PNA-X) that acted as both the signal
generator and receiver. The calibration up to the probes (Cascade
Microtech, i325-T-GSG-75) was performed using an impedance
standard substrate. It should be noted that a frequency extender
was used to expand the target frequency range to 220–330 GHz.
The measured S-parameters include the coupling to the tera-
hertz waveguide, however, we consider the coupling is almost
transparent because the waveguide structure was set to facilitate
impedance matching.

The measurement and calculation results of |S21 | with dif-
ferent optical powers are shown in Fig. 7. It can be seen that
parameter |S21 | increases as the optical power increases, as
expected.

The measurement and simulation results of the frequency
characteristics are shown in Fig. 8 using solid and dotted lines,
respectively. The change in |S21 | was induced by the switching
ON/OFF of the light irradiation (λ = 1.52 μm) through the
lensed fiber. As a result, a maximum extinction ratio of 16.8 dB
was obtained at 287 GHz, which shows that our design is capable
of realizing the modulation between optical and terahertz waves
(On the other hand, measured |S11 | had almost a constant value
of –10 dB at 287 GHz regardless of light irradiation).

The differences between the measurement and simulation
results were caused by the following two facts. The first is the
effects of the parasitic components, such as the electrode pads,

Fig. 7. Measurement and calculation results of |S21 | with different optical
powers.

Fig. 8. Measurement and simulation results of transmission characteristics of
device for terahertz waves.

which we did not consider in the transmission simulation in
the Section II. In the simulation, electromagnetic waves are
directly excited in the input waveguide without including the
electrode pads. The second is due to fabrication error. Although
we assumed the length of one side of the GaInAs mesa to be
3.5 μm in the simulation, it is actually around 4 μm in the
experiment.
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Fig. 9. Experimental setup for measuring dynamic transmission characteristics of device.

Fig. 10. Dynamic characteristics of the device.

V. DYNAMIC CHARACTERISTICS OF DEVICE

The dynamic response characteristic of the fabricated de-
vice was also measured using the measurement system shown
in Fig. 9. A lithium niobate (LN) modulator was used for
modulating the optical wave (1–300 MHz, sinusoidal) from a
laser diode (TSL-510, Santec). A frequency of 287 GHz was
chosen for the terahertz carrier in order to obtain the largest avail-
able extinction ratio based on the measurement results shown in
Fig. 8. The VNA was only used as a signal generator during this
measurement. The output terahertz wave was down-converted
to an adjustable intermediate frequency (IF) based on the het-
erodyne method using a local oscillator (LO). The power of
the down-converted modulation sideband was then measured
by using a spectrum analyzer. The frequency of LO was tuned
with the optical modulation frequency so as to maintain the
sideband signal at a constant frequency (269 MHz). This allows
us to directly extract the power response of DUT at a given
optical modulation frequency, without being affected by the en-
tire system response (i.e. frequency response of the IF bandpass
filter itself).

The measurement results are shown in Fig. 10 where the
intensity decreases as the modulation frequency increases. As
a result, the 3 dB modulation bandwidth was approximately
170 MHz. In order to consider the experimental results above, a
theoretical analysis based on the rate equation was performed.
In the simulation, the carrier density in the GaInAs mesa was

firstly investigated with the intensity-modulated optical signal.
Since the carrier generation speed in the GaInAs mesa is much
faster than the carrier extinction speed, only the carrier density
during the falling of the optical signal was considered. The
carrier density N(t) can be derived by the following equation:

dN (t)
dt

= −N (t) − N0

τ (N (t))
, (4)

where τ (N) is the carrier lifetime and N0 is the initial doping
concentration of the GaInAs mesa (see Table I for each pa-
rameter). After obtaining N(t) for each modulation frequency,
a dynamic response of the terahertz wave was then estimated
from Fig. 7.

The calculated modulation-frequency-dependent extinction
ratio is shown in Fig. 10 as the dotted line. The measurement
bandwidth is wider than what we obtained from the calculation.
This phenomenon was attributed to the surface recombination
of the GaInAs, which was not considered in our analysis.

One way to enhance the modulation bandwidth is to apply
a bias to the GaInAs mesa for removing the photo-generated
carriers. Fig. 11(a) shows the schematic image of a modified
device structure for high-speed operation, where an electrode
is attached on the top of the mesa and a reverse bias is applied
between the top u-GaInAs layer and the bottom n+-InP layer.
In the simulation, we used a three-dimensional TCAD device
simulator to calculate a distribution of photo-generated electron
density around the mesa under a given reverse bias (Fig. 11(b)
depicts one example with the reverse bias of –1 V). For
the analysis, we took into consideration the Poisson equa-
tion, electron and hole continuity equation, parallel electric
field-dependent mobility model, concentration-dependent car-
rier mobility model, Shockley-Read-Hall recombination model,
material-dependent band parameter model, and Fermi-Dirac
statistics model.

Fig. 11(c) shows the time dependence of the electron den-
sity in the mesa (red point in Fig. 11(b)) calculated with the
reverse bias of –1 V and light input of 50 kW/cm2. Electron
accumulation and extinction speeds are 5 × 1017 cm–3 and 3 ns,
respectively. This result indicates that the operation speed over
1 GHz can be achieved with this modulator. On the basis of the
simulation results, we finally estimated modulation bandwidth
(see Fig. 12) using a three-dimensional electromagnetic field
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Fig. 11. (a) Schematic image of modified device structure for high speed operation, (b) Example of photo-generated electron density calculation, (c) Time
dependence of the electron density.

Fig. 12. Modulation bandwidth with applying voltage.

simulator HFSS. As a result, the modulation bandwidth could
be increased to 1 GHz with the reverse bias of –5 V.

VI. SUMMARY

In this paper, a waveguide-type optically-driven terahertz
wave modulator with a ring-shaped microstripline structure was
demonstrated. The extinction ratios obtained from the simula-
tion and measurements were 12.1 dB and 16.8 dB, respectively,
which showed that our design was well suited for terahertz
wave modulation application. However, the experiment also
demonstrated a modulation bandwidth of 170 MHz which we
assume was limited by the carrier lifetime of GaInAs. We be-
lieve that applying high voltage during operation of the device

can increase the modulation bandwidth by removing the
generated carriers during the fall time of the terahertz wave.
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